

COUNTRY CODE

ORDERED TEST #

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

DISEASE NAME DATE OF BIRTH

MEDICAL RECORD #

ORDERING PHYSICIAN MEDICAL FACILITY

ADDITIONAL RECIPIENT MEDICAL FACILITY ID **PATHOLOGIST**

SPECIMEN SITE SPECIMEN ID SPECIMEN TYPE DATE OF COLLECTION SPECIMEN RECEIVED

Genomic Signatures

HRD signature - HRDsig Negative Microsatellite status - MS-Stable Tumor Mutational Burden - 2 Muts/Mb

Gene Alterations

For a complete list of the genes assayed, please refer to the Appendix.

CREBBP I1084fs*3

Report Highlights

There are no highlights associated with this patient's genomic

For more information on potential biological and clinical significance, see the Genomic Signatures and Gene Alterations

GENOMIC SIGNATURES

HRD signature - HRDsig Negative

Microsatellite status - MS-Stable

Tumor Mutational Burden - 2 Muts/Mb

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Genomic Signatures section

No therapies or clinical trials. See Genomic Signatures section

No therapies or clinical trials. See Genomic Signatures section

No therapies or clinical trials are associated with the Gene Alterations for this sample.

If you have questions or comments about this result, please contact your local Customer Service team

(https://www.rochefoundationmedicine.com/#/en/international/orderingsupport)


GENE ALTERATIONS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Alterations section.

CREBBP - 11084fs*3 p. 4

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved through a centralized EU procedure or a national procedure in an EU Member State. Therapies, including but not limited to the following, have been approved $nationally \ and \ may \ not \ be \ available \ in \ all \ EU \ Member \ States: \ Tretinoin, \ Anastrozole, \ Bicalutamide, \ Cyproterone, \ Exemestane, \ Flutamide, \ Goserelin, \ Letrozole, \ Leuprorelin, \ Triptorelin, \ Trip$

GENOMIC SIGNATURES

GENOMIC SIGNATURE

HRD signature

RESULT HRDsig Negative

SCORE 0.03

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical data from real-world clinicogenomic database analyses, HRD signature (HRDsig) Positive status is associated with sensitivity to PARP inhibitors. Multiple studies of patients with either metastatic castration-resistant prostate cancer or metastatic breast cancer treated with PARP inhibitors observed more favorable OS, PFS, and time to treatment discontinuation for

patients with HRDsig Positive status compared with patients with HRDsig Negative status¹⁻³. Patients with HRDsig Positive platinum-sensitive advanced ovarian cancer who received PARP inhibitor maintenance therapy had more favorable PFS than patients who received no maintenance therapy or patients with HRDsig Negative status⁴. Additionally, in a real-world dataset, HRDsig Positive status was associated with improved outcomes on a platinum chemotherapy-containing regimen in pancreatic cancer⁵.

FREQUENCY & PROGNOSIS

HRD signature (HRDsig) Positive status has been identified in multiple solid tumor types, including ovarian (39%), breast (21%), prostate (15%), and pancreas (9%)^{2-3,5-6}. A pan-cancer analysis of a large real-world dataset found a strong association between HRDsig Positive status and biallelic inactivation of BRCA1/2 in ovarian, prostate, and

pancreatic cancers³. Published data investigating the prognostic implications of HRDsig Positive status in solid tumors are limited (PubMed, Jul 2024).

FINDING SUMMARY

Homologous recombination deficiency (HRD) produces characteristic genome-wide changes that accumulate as genomic scars because of incorrect DNA double-strand break repair. HRD signature (HRDsig) is a biomarker developed and validated to classify HRD status in pan-cancer samples using hundreds of copy number (CN) features to capture these genomic changes. HRDsig identifies both genomic and non-genomic mechanisms of HRD and has high sensitivity to detect samples with biallelic genomic alterations in homologous recombination repair (HRR) genes such as BRCA1/2. This sample has a status of HRD signature (HRDsig) Negative, defined as a model score of <0.7.

GENOMIC SIGNATURE

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors⁷⁻⁹, including approved therapies nivolumab and pembrolizumab¹⁰⁻¹¹. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)¹².

FREQUENCY & PROGNOSIS

Rare instances of MSI have been reported in

salivary gland carcinomas13-14; however, two larger studies reported no MSI in 58 total salivary gland tumors¹⁵⁻¹⁶. Published data investigating the prognostic implications of MSI in salivary gland carcinoma are limited (PubMed, Feb 2024). Published data investigating the prognostic implications of MSI in solid tumors has largely been conducted in colon, endometrial, and gastrointestinal cancers due to the higher prevalence in these tumor types. For patients with Stage 2 CRC, deficient DNA MMR and MSI-High status are associated with better prognosis (NCCN Colon Cancer Guidelines, v1.2024, NCCN Rectal Cancer Guidelines, v1.2024)17-20; however, the prognostic impact for patients with more advanced cancer is less clear^{17,21}. For patients with endometrial cancer, microsatellite status and the presence or absence of pathogenic alterations in POLE and TP53 molecularly defines subpopulations with specific prognostic implications (NCCN Uterine Neoplasms Guidelines, v2.2024)²²⁻²⁸. In gastric and gastroesophageal cancers, MSI-High has been associated with certain clinicopathological and molecular features as well

as better prognosis²⁹⁻³⁵, while MS-Stable and MSI-Low were correlated with increased benefit for patients treated with chemotherapy³⁵⁻³⁶.

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA MMR in the tumor³⁷. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2³⁷⁻³⁹. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers40-42. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{37,39,41-42}.

GENOMIC SIGNATURES

GENOMIC SIGNATURE

Tumor Mutational Burden

RESULT 2 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L143-46, anti-PD-1 therapies44-48, and combination nivolumab and ipilimumab⁴⁹⁻⁵⁷. In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{43-46,48,58-62}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types⁵⁸; similar findings were observed in the KEYNOTE 028 and 012 trials $^{\!48}.$ At the same TMB cutpoint, retrospective analysis of

patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB scores ≥ 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)62. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples⁶³. However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb⁶¹. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy⁴³ or those with lower TMB treated with PD-1 or PD-L1-targeting agents⁴⁴.

FREQUENCY & PROGNOSIS

Studies of salivary gland carcinomas reported a median tumor mutational burden (TMB) of 1.7-3.6 Muts/Mb for salivary gland carcinomas, with 13% of salivary gland carcinoma cases harboring a TMB

of ≥10 Muts/Mb⁶⁴⁻⁶⁵. For patients with salivary gland carcinoma not treated with immunotherapy, no significant association between high levels of tissue tumor mutational burden (TMB) (≥10 mut/Mb) and OS was reported in one study, although OS numerically differed between patients with high and lower TMB (4-5 vs. 15.5 months, adjusted HR=1.20)⁶⁵.

FINDING SUMMARY

Tumor mutational burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitutions and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁶⁶⁻⁶⁷ and cigarette smoke in lung cancer⁶⁸⁻⁶⁹, treatment with temozolomide-based chemotherapy in glioma⁷⁰⁻⁷¹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes $^{28,72\text{-}75},$ and microsatellite instability^{28,72-73}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{44-45,58}.

GENE ALTERATIONS

REPORT DATE

GENE

CREBBP

ALTERATION

I1084fs*3

HGVS VARIANT

NM_004380.2:c.3244dup (p.l1084Nfs*3)

VARIANT CHROMOSOMAL POSITION chr16:3817720

VARIANT ALLELE FREQUENCY (% VAF) 46.3%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies available to address genomic alterations in CREBBP. Limited data suggest that CREBBP mutations may be associated with sensitivity to histone deacetylase inhibitors, although conflicting data have also been reported⁷⁶⁻⁸⁰.

FREQUENCY & PROGNOSIS

CREBBP mutations have been observed at high frequency in follicular lymphoma (FL, 26%) and diffuse large B-cell lymphoma (DLBCL, 16%), and at lower frequency in acute lymphoblastic leukemia (ALL, 7%), and tumors of the urinary tract (15%), skin (12%), liver (8.7%), endometrium (8.5%), and stomach (8.2%)(COSMIC, Jan 2025)81. These mutations include missense substitutions clustered in the CREBBP histone acetyltransferase domain and truncating mutations throughout the gene sequence, suggesting a role for CREBBP inactivation in these diseases. CREBBP mutations have been reported to occur in the transition from prostate acinar carcinoma to squamous cell carcinoma (SCC)82, which may indicate significance for CREBBP in SCC. In two cases of relapsed pediatric B-cell ALL, CREBBP mutation conferred resistance to glucocorticoid therapy83. Reports have found CREBBP mutation in 62-68% of patients with FL84-85, which was associated with immune evasion84. AML with MYST3/CREBBP fusion was reported to occur in 60-80% of cases 9-72 months

after adjuvant chemotherapy for breast cancer and was associated with a poor prognosis⁸⁶⁻⁸⁷.

FINDING SUMMARY

CREBBP encodes a ubiquitously expressed transcriptional coregulatory protein that interacts with multiple transcription factors and can couple control of gene expression to chromatin remodeling via its histone acetyltransferase activity. Inherited microdeletions and truncating point mutations in CREBBP are reported to be causal in approximately 20% of cases of Rubinstein-Taybi $syndrome^{88}. \ The \ chromosomal \ rearrangement$ t(8;16)(p11;p13) is characteristic of the M4/M5 subtype of acute myeloid leukemia (AML) and results in a chimeric gene fusing MYST3/MOZ (a gene essential for the development of the hematopoietic system and maintenance of hematopoietic stem cells) to CREBBP89. CREBBP-BCORL1 fusion has been reported in patients with ossifying fibromyxoid tumors⁹⁰⁻⁹¹.

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

AURKB

NM_004217.2: c.307G>A (p.V103M) chr17:8110585 6.7% VAF

KMT2D (MLL2)

NM_003482.4: c.15695T>A (p.15232N) chr12:49420054 86.5% VAF ERCC4

NM_005236.2: c.2647G>A (p.E883K) chr16:14042100 46.1% VAF

PDGFRA

amplification and PDGFRA(NM_006206) rearrangement intron 18

KDR

amplification

KIT

amplification

PIK3C2G

NM_004570.4: c.2828G>A (p.W943*) chr12:18650617 8.1% VAF

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B	or WTX)
APC	AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX
AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2
BCL6	BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1
BTG2	BTK	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EMSY (C11orf30)	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH FH	FUF25 FLCN	FLT1	FLT3		FUBP1	GABRA6	GATA3	GATA4
				FOXL2				
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3-3A (H3F3A)
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11 (MRE11A)	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	<i>NOTCH3</i>
NPM1	NRAS	NSD2 (WHSC1 or	MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3
P2RY8	PALB2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1
PMS2	POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI
PRKN (PARK2)	PTCH1	PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51
RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10
REL	RET	RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO
SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3
STK11	SUFU	SYK	TBX3	TEK	TENT5C (FAM46C	.)	TET2	TGFBR2
TIPARP	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3	U2AF1	VEGFA
VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703			
DNA GENE	LIST: FOR THE D	ETECTION OF	SELECT REAR	RANGEMENTS				
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
FTV5	FTV6	FWSR1	F7R	FGFR1	FGFR2	FGFR3	KIT	KMT24 (MII)

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
$P \Delta P \Delta$	RFT	POS1	RSPO2	SDCA	SIC3/A2	TFRC*	TFRT**	TMPRSS2

^{*}TERC is an NCRNA

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER GENOMIC SIGNATURES

HRD signature (HRDsig) Microsatellite (MS) status Tumor Mutational Burden (TMB)

^{**}Promoter region of TERT is interrogated

APPENDIX

About FoundationOne®CDx

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

Foundation Medicine GmbH is accredited by DAkkS according to DIN EN ISO 15189:2014. The accreditation only applies to the scope of accreditation listed in certificate D-

ML-21105-01-00. **((**

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: https://www.foundationmedicine.qarad.eifu.online/foundationmedicine/en/foundationmedicine?keycode=286605475.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, genomic loss of heterozygosity (LOH) score and homologous recombination deficiency (HRD) status (F1CDx HRD defined as tBRCA-positive and/or LOH high), using DNA isolated from formalin-fixed, paraffin embedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLE

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor

samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes.

Using an Illumina® Sequencing platform (HiSeq 4000 or NovaSeq 6000), hybrid capture-selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g., gene fusions). Additionally, genomic signatures including microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: The association of a therapy with a genomic alteration or signature does not necessarily indicate pharmacologic effectiveness (or lack thereof); no association of a therapy with a genomic alteration or signature does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness).

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold

for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for *ERBB2* and six (6) for all other genes.

Conversely, an alteration denoted as "loss – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials

Ranking of Therapies in Summary Table
Therapies are ranked based on the following
criteria: Therapies with clinical benefit (ranked
alphabetically within each evidence category),
followed by therapies associated with resistance
(when applicable).

Ranking of Clinical Trials

Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Genomic signatures and gene alterations detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each genomic signature or gene alteration. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000

calculated as the number of unstable

orthogonal (alternative) method.

2. TMB by F1CDx is determined by counting all

synonymous and non-synonymous variants

filtering) and the total number is reported as

mutations per megabase (mut/Mb) unit.

present at 5% allele frequency or greater (after

Observed TMB is dependent on characteristics

of the specific tumor focus tested for a patient

(e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection;

therefore, observed TMB results may vary

between different specimens for the same

employed on the same sample. The TMB

patient and between detection methodologies

calculation may differ from TMB calculations

used by other assays depending on variables

such as the amount of genome interrogated,

percentage of tumor, assay limit of detection

(LoD), filtering of alterations included in the

bioinformatic test specifications. Refer to the

https://www.accessdata.fda.gov/cdrh_docs/

pdf17/P170019B.pdf. The clinical validity of

TMB defined by this panel has been established

for TMB as a qualitative output for a cut-off of

10 mutations per megabase but has not been

established for TMB as a quantitative score.

3. Homologous recombination deficiency (HRD)

produces characteristic genome-wide changes

that can be captured by analyzing segmented

validated to classify HRD status in pan-cancer

professional service for any solid tumor sample.

"HRDsig Positive" and samples with score < 0.7

copy number (CN) profiles. HRD signature

(HRDsig) is a biomarker developed and

samples using hundreds of CN features

detected by the FoundationOne CDx test.

HRDsig may be reported as a laboratory

Samples with score ≥0.7 are reported as

SSED for a detailed description of these

score, and the read depth and other

variables in FMI's TMB calculation

ORDERED TEST #

APPENDIX

TUMOR TYPE

About FoundationOne®CDx

are reported as "HRDsig Negative." The HRDsig microsatellite loci. For a given microsatellite score is not an HRD accumulation or locus, non-somatic alleles are discarded, and the probability score, but rather a model score; it microsatellite is categorized as unstable if ranges from o-1 and has a bimodal distribution, remaining alleles differ from the reference with most pan-cancer results falling between genome. The final fraction unstable loci score is o-o.2 or o.8-1. The score is provided as additional information but has not been microsatellite loci divided by the number of validated as a stand-alone biomarker to support evaluable microsatellite loci. The MSI-H and clinical decision making and should be MSS cut-off thresholds were determined by integrated with other patient-specific factors, analytical concordance to a PCR comparator including cancer type and other genomic assay using a pan-tumor FFPE tissue sample findings. HRDsig is reported as "Cannot Be Determined" if the sample is not of sufficient set. Patients with results categorized as 'MS-Stable' with median exon coverage <300X, 'MSquality to confidently determine CN features. Equivocal,' or 'Cannot Be Determined' should receive confirmatory testing using a validated

- 4. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 5. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 6. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an ERBB2 amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of ERBB2 copy number 4 in breast cancer is estimated to be approximately 2%. HER2 overexpression occurs in 18-20% of breast cancers (Owens et al. 2004 [PMID: 15140287]; Salmon et al. 1987 [PMID: 3798106]; Yaziji et al. 2004 [PMID: 15113815]). Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included

in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*
Repeatability	5.11 - 10.40
Reproducibility	5.95 - 12.31
INDELS	%CV*
INDELS Repeatability	%CV*

Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-**UP GERMLINE TESTING**

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic.

APPENDIX

Computational Biology Suite Version 6.34.0

About FoundationOne®CDx

ORDERED TEST #

Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information

concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
ctDNA	Circulating tumor DNA
DCR	Disease control rate
DFS	Disease-free survival
DOR	Duration of response
EFS	Event-free survival
ER	Estrogen receptor
HR +/-	Hormone-receptor positive/negative
ITD	Internal tandem duplication
MR	Molecular response
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
OS	Overall survival
mOS	Median overall survival
PD	Progressive disease
PFS	Progression-free survival
mPFS	Median progression-free survival
PR	Partial response
PSA	Prostate-specific antigen
R/R	Relapsed or refractory
SD	Stable disease
TKI	Tyrosine kinase inhibitor
CRC	Colorectal cancer
HCC	Hepatocellular carcinoma
HNSCC	Head and neck squamous cell carcinoma
NSCLC	Non-small cell lung cancer
RCC	Renal cell carcinoma
SCC	Squamous cell carcinoma

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

SOFTWARE VERSION INFORMATION

MR Suite Version (RG) 8.6.0 MR Reporting Config Version 70 Analysis Pipeline Version v3.39.0

The median exon coverage for this sample is 2,638x

© 2025 Foundation Medicine, Inc. All rights reserved

APPENDIX

References

- 1. Triner et al., 2024; ASCO GU Abstract 186
- Batalini F, et al. JCO Precis Oncol (2023) pmid: 37992259
- Moore JA, et al. JCO Precis Oncol (2023) pmid: 37769224
- Richardson DL, et al. Clin Cancer Res (2024) pmid: 39078736
- 5. Chen KT, et al. Oncologist (2023) pmid: 37354528
- 6. Richardson et al., 2023; ASCO Abstract 5583
- Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 9. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 10. Overman et al., 2016; ASCO Abstract 3501
- 11. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 12. Ayers et al., 2016; ASCO-SITC Abstract P60
- 13. Suzuki H, et al. Diagn. Mol. Pathol. (1998) pmid: 9917133
- **14.** Moore A, et al. Head Neck (2020) pmid: 31762146
- Ohki K, et al. Int J Oral Maxillofac Surg (2001) pmid: 11829237
- 16. Nakano T, et al. Oral Oncol. (2019) pmid: 30846173
- 17. Argilés G, et al. Ann Oncol (2020) pmid: 32702383
- 18. Ribic CM, et al. N. Engl. J. Med. (2003) pmid: 12867608
- 19. Sargent DJ, et al. J. Clin. Oncol. (2010) pmid: 20498393
- 20. Sinicrope FA, et al. J Natl Cancer Inst (2011) pmid: 21597022
- 21. Van Cutsem E, et al. Ann Oncol (2014) pmid: 25190710
- 22. Wu et al., 2022;36357827
- 23. McCluggage WG, et al. Histopathology (2022) pmid: 34996131
- 24. Oaknin A, et al. Ann Oncol (2022) pmid: 35690222
- 25. Talhouk A, et al. Br J Cancer (2015) pmid: 26172027
- 26. Concin N. et al. Virchows Arch (2021) pmid: 33604759
- 27. León-Castillo A, et al. J Clin Oncol (2020) pmid: 32749941
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 29. Zhu L, et al. Mol Clin Oncol (2015) pmid: 26137290
- 30. Leung SY, et al. Cancer Res. (1999) pmid: 9892201
- 31. dos Santos NR, et al. Gastroenterology (1996) pmid:

- 8536886
- 32. Wu MS, et al. Cancer Res. (1998) pmid: 9537253
- Seo JY, et al. World J. Gastroenterol. (2015) pmid: 26078567
- 34. Nature (2014) pmid: 25079317
- Pietrantonio F, et al. J. Clin. Oncol. (2019) pmid: 31513484
- **36.** Janjigian YY, et al. Cancer Discov (2018) pmid: 29122777
- 37. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- pmid: 2633/942 38. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 39. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:
- 40. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 41. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- **42.** Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 43. Legrand et al., 2018; ASCO Abstract 12000
- 44. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 45. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 46. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 47. Marabelle et al., 2019; ESMO Abstract 11920
- 48. Cristescu R, et al. Science (2018) pmid: 30309915
- 49. Hodi et al., 2019; AACR abstract CT037
- **50.** Lee et al., 2019; ASCO Abstract 641
- Rizvi et al., 2017; WCLC Abstract 1106
 Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 53. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 54. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 55. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 56. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 57. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 58. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 59. Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- 60. Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941

- **61.** Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- **62.** Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 63. Schenker at al., 2022; AACR Abstract 7845
- **64.** Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 65. Shao C, et al. JAMA Netw Open (2020) pmid: 33119110
- 66. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 67. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 68. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 69. Rizvi NA, et al. Science (2015) pmid: 25765070
- **70.** Johnson BE, et al. Science (2014) pmid: 24336570
- 71. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 72. Nature (2012) pmid: 22810696
- 73. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 74. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- **75.** Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- **76.** Mullighan CG, et al. Nature (2011) pmid: 21390130
- 77. Andersen CL, et al. Leuk Res Rep (2012) pmid: 24371765
- 78. Mensah AA, et al. Oncotarget (2015) pmid: 25671298
- 79. Zhang MC, et al. Clin Epigenetics (2020) pmid: 33097085
- 80. Sun Y, et al. Cancer Lett (2021) pmid: 34481935
- 81. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 82. Grasso CS, et al. Ann. Oncol. (2015) pmid: 25735316
- 83. Ma X. et al. Nat Commun (2015) pmid: 25790293
- 84. Green MR, et al. Proc. Natl. Acad. Sci. U.S.A. (2015) pmid: 25713363
- 85. Loeffler M, et al. Leukemia (2015) pmid: 25027518
- 86. Gervais C, et al. Leukemia (2008) pmid: 18528428
- 87. Haferlach T, et al. Leukemia (2009) pmid: 19194466
- 88. Petrij F, et al. J. Med. Genet. (2000) pmid: 10699051
- 89. Borrow J, et al. Nat. Genet. (1996) pmid: 8782817
- 90. Kao YC, et al. Genes Chromosomes Cancer (2017) pmid: 27537276
- 91. Hofvander J, et al. Mod. Pathol. (2020) pmid: 31932680