

ABOUT THE TEST FoundationOne[®] Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

DISEASE

NAME

DATE OF BIRTH

SEX

MEDICAL RECORD #

ORDERING PHYSICIAN
MEDICAL FACILITY

ADDITIONAL RECIPIENT
MEDICAL FACILITY ID
PATHOLOGIST

SPECIMEN SITE
SPECIMEN ID
SPECIMEN TYPE
DATE OF COLLECTION
SPECIMEN RECEIVED

Biomarker Findings

Microsatellite status - MS-Stable
Tumor Mutational Burden - 2 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

FUS FUS-DDIT3 fusion (Variant 10) *EZH2* Y646C

Report Highlights

- Variants with diagnostic implications that may indicate a specific cancer type: FUS FUS-DDIT3 fusion (Variant 10) (p. 4)
- Targeted therapies with NCCN categories of evidence in this tumor type: Trabectedin (p. 6)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. Z)

BIOMARKER FINDINGS	THERAPY AND CLINICAL TRIAL IMPLICATIONS			
Microsatellite status - MS-Stable	No therapies or clinical trials. See Biomarker Findings section			
Tumor Mutational Burden - 2 Muts/Mb	omarker Findings section			
GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)		
FUS - FUS-DDIT3 fusion (Variant 10)	Trabectedin 1	none		
6 Trials see p. 8				
EZH2 - Y646C	none	none		
1 Trial see p. <u>7</u>				
		NCCN category		

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

BIOMARKER FINDINGS

REPORT DATE

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴⁻⁵. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁶.

FREQUENCY & PROGNOSIS

In a computational analysis of paired tumor and

normal sarcomas in the TCGA dataset, 25% of which were liposarcomas, only 0.8% (2/255) of samples were MSI-high (MSI-H)⁷. Smaller studies have reported MSI at any level in a subset of liposarcoma patients⁸⁻⁹ or reported as absent in 21 cases analyzed10. Published data investigating the prognostic implications of MSI in liposarcoma are limited (PubMed, Mar 2024). Published data investigating the prognostic implications of MSI in solid tumors has largely been conducted in colon, endometrial, and gastrointestinal cancers due to the higher prevalence in these tumor types. For patients with Stage 2 CRC, deficient DNA MMR and MSI-High status are associated with better prognosis (NCCN Colon Cancer Guidelines, v1.2024, NCCN Rectal Cancer Guidelines, v1.2024)¹¹⁻¹⁴; however, the prognostic impact for patients with more advanced cancer is less clear 11,15. For patients with endometrial cancer, microsatellite status and the presence or absence of pathogenic alterations in POLE and TP53 molecularly defines subpopulations with specific prognostic implications (NCCN Uterine Neoplasms Guidelines, v2.2024)¹⁶⁻²². In gastric and gastroesophageal

cancers, MSI-High has been associated with certain clinicopathological and molecular features as well as better prognosis²³⁻²⁹, while MS-Stable and MSI-Low were correlated with increased benefit for patients treated with chemotherapy²⁹⁻³⁰.

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA MMR in the tumor31. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2³¹⁻³³. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers34-36. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins31,33,35-36.

BIOMARKER FINDINGS

BIOMARKER

Tumor Mutational Burden

RESULT 2 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L137-40, anti-PD-1 therapies38-42, and combination nivolumab and ipilimumab⁴³⁻⁵¹. In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{37-40,42,52-56}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types⁵²; similar findings were observed in the KEYNOTE 028 and 012 trials42. At the same TMB cutpoint, retrospective analysis of patients with solid tumors treated with any

checkpoint inhibitor identified that tissue TMB scores ≥ 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)⁵⁶. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples⁵⁷. However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb⁵⁵. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy³⁷ or those with lower TMB treated with PD-1 or PD-L1-targeting agents³⁸.

FREQUENCY & PROGNOSIS

Liposarcoma harbors a median TMB of 1.7 Muts/Mb, and 0.2% of cases have high TMB (>20 Muts/Mb)⁵⁸. Sarcomas in general harbor a median TMB of 2.5 Muts/Mb, with angiosarcoma (13.4%) and malignant peripheral nerve sheath tumor (8.2%) having the highest percentage of cases with high

TMB (>20 Muts/Mb)⁵⁸. Published data investigating the prognostic implications of tissue TMB in sarcoma are conflicting (PubMed, Jan 2025). High tissue TMB was associated with improved PFS and metastasis-free survival in a study of undifferentiated sarcomas⁵⁹, but with reduced survival in a study of patients with rhabdomyosarcoma⁶⁰.

FINDING SUMMARY

Tumor mutational burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitutions and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁶¹⁻⁶² and cigarette smoke in lung cancer⁶³⁻⁶⁴, treatment with temozolomide-based chemotherapy in glioma⁶⁵⁻⁶⁶, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes 19,67-70, and microsatellite instability^{19,69-70}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{38-39,52}.

PATIENT TUMOR TYPE

ORDERED TEST #

GENOMIC FINDINGS

GENE

FUS

ALTERATION

FUS-DDIT3 fusion (Variant 10)

REARRANGEMENT DETAILS

FUS(NM_004960)-DDIT3(NM_004083) fusion (F6; D2)

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no targeted therapies available to address fusions or inactivation of the FUS gene. However, rhabdomyosarcomas harboring EWSR1- or FUS-TFCP2 fusion have been reported to have increased ALK expression⁷¹⁻⁷⁵ and a case study of a patient with intraosseous rhabdomyosarcoma with FUS-TFCP2 fusion reported a good response to sequential treatment with radiotherapy, crizotinib, alectinib, then lorlatinib, with the patient stable at 19 months⁷². FUS-DDIT3 fusion may predict sensitivity to the approved therapy trabectedin. Trabectedin has enabled significant responses for patients with myxoid liposarcoma harboring FUS-DDIT3 in retrospective⁷⁶⁻⁷⁷ and case⁷⁸ studies, especially those with Variant 1 or Variant 2 fusions; however, 2 patients with FUS-DDIT3 Variant 3 experienced PD, and some patients harbored multiple types of the fusion⁷⁶⁻⁷⁷. In preclinical

studies, myxoid liposarcoma cells showed sensitivity to trabectedin in xenografts harboring FUS-DDIT3 Variant 1, 2, or 3; reduced mRNA expression; and reduced promoter binding to target genes, although inhibition was less pronounced for cells harboring FUS-DDIT3 Variant 3⁷⁹⁻⁸². However, due to the limited sample size of these studies, it is unclear whether response to trabectedin may be predicted by FUS-DDIT3 fusion type. The specific targets of the FUS-DDIT3 protein that can drive oncogenesis have not been fully identified. Initial preclinical studies utilizing a panel of myxoid liposarcomas containing DDIT3 fusions reported FGFR2 overexpression and in vitro sensitivity to FGFR2 inhibitors⁸³.

FREQUENCY & PROGNOSIS

FUS-DDIT3 fusions are frequent in myxoid liposarcoma, having been reported in 90-95% of samples; the remaining samples often contain an EWSR1-DDIT3 fusion⁸⁴⁻⁸⁸. FUS-DDIT3 fusions have also been reported in well-differentiated and pleomorphic liposarcomas⁸⁹ and have been reported to transform cultured cells and induce liposarcoma development in mice⁹⁰⁻⁹¹. Median disease-free survival was significantly higher for patients with myxoid/round cell liposarcoma harboring FUS-DDIT3 fusion Variant 2 (75 months, n=13) than those harboring FUS-DDIT3 fusion Variant 1 (17 months, n=6); OS did not differ⁸⁷.

Published data investigating the prognostic implications of FUS alterations in soft tissue sarcoma are limited (PubMed, Sep 2024).

FINDING SUMMARY

Fused in sarcoma (FUS, also called TLS) encodes a protein component of the heterogeneous nuclear ribonucleoprotein complex, which is involved in pre-mRNA splicing and the export of fully processed mRNA to the cytoplasm. Several different FUS-DDIT3 fusion variants have been observed for patients with myxoid liposarcoma, with type 2 (FUS exons 1-5 fused to DDIT3 exon 2) fusion more frequently detected than type 1 (FUS exons 1-7 fused to DDIT3 exon 2) or type 3 (FUS exons 1-8 fused to DDIT3 exon 2) fusions, and other variants were more rare; no significant association between variant type and histological grade or survival outcome has been reported87,89,92. Nontype 3 variant fusions, such as observed here, have been associated with clinical response to trabectedin, as compared with type 3 fusions^{76-77,81-82}.

POTENTIAL DIAGNOSTIC IMPLICATIONS

FUS-DDIT3 fusions are hallmark alterations of myxoid liposarcoma (NCCN Soft Tissue Sarcoma Guidelines, v3.2024)⁸⁴⁻⁸⁸.

PATIENT TUMOR TYPE

ORDERED TEST #

GENOMIC FINDINGS

GENE

EZH2

ALTERATION Y646C

HGVS VARIANT

NM_004456.4:c.1937A>G (p.Y646C)

VARIANT CHROMOSOMAL POSITION chr7:148508727

VARIANT ALLELE FREQUENCY (% VAF)
43.7%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical and preclinical evidence indicates that activating EZH2 alterations may predict sensitivity to EZH2 inhibitors⁹³⁻¹⁰¹. Multiple Phase 2 trials of the EZH2 inhibitor tazemetostat have associated activating EZH2 mutations with improved clinical

outcomes for patients with diffuse large B-cell lymphoma or follicular lymphoma94,97,102. Additional EZH2 inhibitors have been tested in Phase 1 trials, including CPI-1205 for patients with B-cell lymphoma (1 CR and 5 SDs, n=32)93, CPI-0209 for patients with solid tumors (2 PRs and 14 SDs, n=39)103, and GSK2816126 for patients with lymphoma (1 PR, 6 SDs, and 10 PDs, n=20) or solid tumors (8 SDs and 11 PDs, n=21), although this study was terminated for lack of efficacy¹⁰⁴. The dual EZH1/2 inhibitor valemetostat has shown promising clinical activity with a 53% response rate (1/15 CRs, 7/15 PRs) for patients with non-Hodgkin lymphoma and an 80% ORR for the subset of patients with T-cell lymphoma (1/5 CRs, 3/5 PRs)¹⁰⁵. In preclinical studies, cells resistant to EZH2 inhibitors retain sensitivity to compounds that block EED, a core subunit of the PRC2 complex¹⁰⁶⁻¹⁰⁹. Other therapeutic approaches targeting EZH2 include DNA demethylation agents and histone deacetylation inhibitors 110-112. In addition, preclinical studies in breast cancer cells

have suggested that PI₃K inhibition may reverse some of the effects of EZH₂ overexpression¹¹³.

FREQUENCY & PROGNOSIS

EZH2 alterations are rare in sarcomas, detected in fewer than 1% of cases in a large genomic study¹¹⁴. Published data investigating the prognostic implications of EZH2 alteration in liposarcoma are limited (PubMed, Nov 2023).

FINDING SUMMARY

EZH2 encodes a histone-lysine N-methyltransferase, which methylates lysine 9 and 27 on histone H3 and mediates transcriptional repression of target genes¹¹⁵⁻¹¹⁸. The role of EZH2 in cancer is complex, described as both an oncogene and a tumor suppressor in different contexts¹¹⁹⁻¹²³. Mutation of EZH2 Y646 (corresponding to Y641 in another well-studied EZH2 transcript), as seen here, results in an increase in H3K27 trimethylation¹²⁴⁻¹²⁸.

THERAPIES WITH CLINICAL BENEFIT

IN PATIENT'S TUMOR TYPE

Trabectedin

Assay findings association

FUS

FUS-DDIT3 fusion (Variant 10)

AREAS OF THERAPEUTIC USE

Trabectedin is a small molecule that interferes with DNA repair pathways. It is FDA approved for the treatment of patients with unresectable or metastatic liposarcoma or leiomyosarcoma who have received a prior anthracycline-containing regimen. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Significant responses to trabectedin have been reported for patients with myxoid liposarcoma and FUS-DDIT3 fusion in retrospective $^{76\text{-}77}$ and case 78 studies. Preclinical data have shown that trabectedin inhibits FUS-DDIT3 binding to promoter regions of several target genes $^{79\text{-}81}$, reduces mRNA expression $^{80\text{-}81,129}$, and suppresses xenograft growth of FUS-DDIT3-expressing myxoid liposarcoma cell lines $^{81\text{-}82}$. Therefore, FUS-DDIT3 may predict response to trabectedin.

SUPPORTING DATA

A Phase 3 study for 518 patients with liposarcoma or

leiomyosarcoma reported a significant improvement in PFS when treated with trabectedin rather than dacarbazine (4.2 vs. 1.5 months), with the greatest response in myxoid liposarcoma (5.6 vs. 1.5 months)¹³⁰. Phase 2 trials for patients with translocation-related soft tissue sarcoma comparing trabectedin with best supportive care reported significantly improved median PFS (mPFS; 5.6 vs. 0.9 months, HR=0.07), median OS (mOS; not reached vs. 8.0 months, HR=0.42), and ORR (11% [4/37; all PRs] vs. o% [o/36]) from trabectedin; for patients with myxoid or round cell liposarcoma, an mPFS of 7.4 months, an mOS of 18.1 months, and an ORR of 27% (6/22; all PRs) were reported¹³¹. Studies of trabectedin for patients with myxoid liposarcoma harboring FUS-DDIT3 have reported clinical responses, including CRs for 6.7% (4/60) of patients, PRs for 63% (38/60), and an mPFS of 14-17 months⁷⁶⁻⁷⁷. Combining trabectedin with radiation enabled an ORR of 36% (5/14; all PRs) for patients with myxoid liposarcoma in a Phase 1 trial¹³², and for patients with soft tissue sarcoma, an ORR of 72% (18/25; 2 CRs, 16 PR) and an mPFS of 9.9 months in a Phase 1/2 trial¹³³.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

PATIENT

TUMOR TYPE

ORDERED TEST #

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

EZH2

ALTERATION Y646C **RATIONALE**

EZH2 inhibitors may be relevant in the case of EZH2 activating mutations.

NCT05598151	PHASE 1
Dose Escalation and Expansion Study of HM97662 in Advanced or Metastatic Solid Tumors	TARGETS EZH1, EZH2
LOCATIONS: Seoul (Korea, Republic of), Adelaide (Australia), Ballarat (Australia), Clayton (Australia	

REPORT DATE

ORDERED TEST #

CLINICAL TRIALS

GENE FUS **RATIONALE**

FUS-DDIT3 fusion may predict sensitivity to trabectedin.

ALTERATION

FUS-DDIT3 fusion (Variant 10)

NCT05597917	PHASE 3
tTF-NGR Randomized Study - STS	TARGETS FUS-DDIT3, CD61, CD13, CD51

LOCATIONS: Berlin (Germany), Dresden (Germany), Graz (Austria), Bad Saarow (Germany), Frankfurt am Main (Germany), Münich (Germany), Münster (Germany), Mainz (Germany), Heidelberg (Germany)

NCT04794127	PHASE 2
Study on Trabectedin in Combination With Pioglitazone in Patients Myxoid Liposarcomas With Stable Disease After T Alone.	TARGETS FUS-DDIT3

LOCATIONS: Milano (Italy)

NCT02275286	PHASE 1/2
Phase I-II Trial, Multicenter, Open, Exploring Trabectedin Plus Radiotherapy in Soft Tissue Sarcoma Patients	TARGETS FUS-DDIT3

LOCATIONS: Milan (Italy), Candiolo (Italy), Lyon (France), Bordeaux (France), Barcelona (Spain), Palma de Mallorca (Spain), Zaragoza (Spain), Madrid (Spain), Sevilla (Spain), San Cristobal de la Laguna (Spain)

NCT05131386	PHASE 2
Multicohort Trial of Trabectedin and Low-dose Radiation Therapy in Advanced/Metastatic Sarcomas	TARGETS FUS-DDIT3

LOCATIONS: Barcelona (Spain), Madrid (Spain), Tenerife (Spain)

NCT03138161	PHASE 1/2
Trabectedin, Ipilimumab and Nivolumab as First Line Treatment for Advanced Soft Tissue Sarcoma	TARGETS FUS-DDIT3, PD-1, CTLA-4

LOCATIONS: California

NCT03886311	PHASE 2
Talimogene Laherparepvec, Nivolumab and Trabectedin for Sarcoma	TARGETS FUS-DDIT3, PD-1
LOCATIONS: California	

APPENDIX

TUMOR TYPE

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future. Please note that some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

CILK1 (ICK)

NM_016513.4: c.1106_1117del (p.P369_L372del) chr6:52878494-52878506 41.2% VAF

MAP3K6

NM_004672.3: c.3373_3375del (p.K1125del) chr1:27683229-27683232 49.7% VAF

NUP93

NM_014669.3: c.1749T>G (p.1583M) chr16:56868657 91.5% VAF

CUX1

NM_001202544.1: c.1525C>G (p.L509V) chr7:101921229 51.5% VAF

MKI67

NM_002417.4: c.4807G>A (p.E1603K) chr10:129905297 94.3% VAF

PTEN

NM_000314.4: c.206A>T (p.N69I) chr10:89685311 89.3% VAF

KMT2A (MLL)

NM_005933.3: c.4369A>G (p.K1457E) chr11:118359365 47.9% VAF

MY018A

NM_078471.3: c.5780A>G (p.K1927R) chr17:27413528 47.6% VAF

SETD2

NM_014159.6: c.4193T>C (p.11398T) chr3:47161933 52.9% VAF

LRP1B

NM_018557.2: c.393G>A (p.M131I) chr2:142012161 48.4% VAF

NCOR2

NM_006312.4: c.1520_1531dup (p.Q507_Q510dup) chr12:124887058 48.2% VAF

WDR90

NM_145294.4: c.3994C>T (p.R1332C) chr16:712020 50.5% VAF

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	ADGRA2 (GPR124)	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B	or WTX)
APC	APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ARID1A	ARID2
ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL
B2M	BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A
BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1
BRSK1	BTG2	BTK	BTLA	CAD	CALR*	CARD11	CBFB	CBL
CCN6 (WISP3)	CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36
CD58	CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6
CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2
CIC	CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2
DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR
ELP2	EMSY (C11orf30)	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3
ERBB4	ERG	ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31
FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1
FGFR2	FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1
FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3
GID4 (C17orf39)	GNA11	GNA12	GNA13	GNAQ	GNAS	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	H1-2 (HIST1H1C)	C	H1-3 (HIST1H1D)	00.102	0.02.
H1-4 (HIST1H1E)		H2AC6 (HIST1H2A		H2AC11 (HIST1H2A	(G)	H2AC16 (HIST1H2)	4/)	
		H2BC11 (HIST1H2BJ)		H2BC12 (HIST1H2BK)				
H2BC17 (HIST1H2)		H3C2 (HIST1H3B)	C)	HNF1A	HRAS	HSP90AA1	ICK	ID3
IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2	IKZF3	IL7R	INHBA
INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3
JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR
KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LEF1	LRP1B
LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B
MEF2C	MEN1	MET	MIB1	MITF	MKI67	MLH1	MPL	MRE11 (MRE11A)
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1
NOTCH1	NOTCH2	NPM1	NRAS	NSD2 (WHSC1 or N		NT5C2	NTRK1	NTRK2
NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK	PAX5
PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)		PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TENT5C (FAM46C)		TGFBR2	TLL2	TMEM30A
TMSB4XP8 (TMSL		TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2	U2AF1
			,501	. 302	131 III	. 5565		52/11/

TUMOR TYPE

(I)	FOUNDATION ONE®HEM

ORDERED TEST #				APPE	NDIX Genes	dationOne®Heme		
U2AF2	VHL	WDR90	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217
ZNF24 (ZSCAN3)	ZNF703	ZRSR2						
*Note: the assay v	vas updated on 11/	8/2016 to include t	he detection of alt	erations in CALR				
HEMATOLOGIC	AL MALIGNANCY	DNA GENE LIST	: FOR THE DETI	ECTION OF SELE	CT REARRANGEM	IENTS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGIC	AL MALIGNANCY	' RNA GENE LIST	: FOR THE DETE	ECTION OF SELE	CT REARRANGEM	ENTS*		
ABI1	ABL1	ABL2	ACSL6	AFDN (MLLT4 or	· AF6)	AFF1	AFF4	ALK
ARHGAP26 (GRAI	F)	ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC
BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS1 (CARS)	CBFA2T3	CBFB	CBL
CCND1	CCND2	CCND3	CD274 (PD-L1)	CDK6	CDX2	CEP43 (FGFR1OP)	CHIC2	CHN1
CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2
CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22
EGFR	EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15
ERBB2	ERG	ETS1	ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B
FCRL4	FEV	FGFR1	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3
FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	H4C9 (HIST1H4I)
HERPUD1	HEY1	HIP1	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3
HOXA9	HOXC11	HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK
IGL	IKZF1	IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3
JAZF1	KAT6A (MYST3)	KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	МЕСОМ	MLF1	MLLT1 (ENL)
MLLT10 (AF10)	MLLT3	MLLT6	MN1	MNX1	MRTFA (MKL1)	MSI2	MSN	MUC1
MYB	MYC	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1
NF2	NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NSD2 (WHSC1 or	MMSET)
NSD3 (WHSC1L1)	NTRK1	NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD
P2RY8	PAFAH1B2	PAX3	PAX5	PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)
PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1	PLAG1
PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	РТСН1	PTK7
RABEP1	RAF1	RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213
RNF217-AS1 (STL)		ROS1	RPL22	RPN1	RUNX1	RUNX1T1 (ETO)	RUNX2	SEC31A
SEPTIN5 (SEPT5)	SEPTIN6 (SEPT6)	SEPTIN9 (SEPT9)	SET	SH3GL1	SLC1A2	SNX29 (RUNDC2A		SRSF3
SS18	SSX1	SSX2	SSX4	STAT6	SYK	TAF15	TAL1	TAL2
TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3	TFG	TFPT	TFRC
TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	TPM3	TPM4	TRIM24
TDID11	TTI	TVV	UCDC	VDELE	70701/	7141/442	71/5204	71/5/21

^{*}Note: some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

ZBTB16

ZMYM2

YPEL5

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

USP6

TYK2

Microsatellite (MS) status

TRIP11

Tumor Mutational Burden (TMB)

TTL

ZNF384

ZNF521

APPENDIX

TUMOR TYPE

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials and quantitative markers that may support immunotherapy clinical trial enrollment.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research.

INTENDED USE

FoundationOne Heme is a next generation sequencing-based in vitro diagnostic device for hematologic malignancies and sarcomas. The test is intended for the detection of substitutions. insertion and deletion alterations (indels), copy number alterations (CNAs), and select rearrangements from the complete coding DNA sequences of 406 genes, as well as selected introns of 31 genes using DNA isolated from peripheral blood, bone marrow aspirate (BMA), and formalinfixed paraffin embedded (FFPE) tumor tissue specimens. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across 265 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas. FoundationOne Heme is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with hematologic malignancies and sarcomas.

PERFORMANCE SPECIFICATIONS

Please refer to technical information for performance specification details: https://www.foundationmedicine.qarad.eifu.online/foundationmedicine/en/foundationmedicine.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration

does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials

Ranking of Therapies in Summary Table
Therapies are ranked based on the following
criteria: Therapies with clinical benefit (ranked
alphabetically within each evidence category),
followed by therapies associated with resistance
(when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical
proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information,

age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low

APPENDIX

About FoundationOne®Heme

sample quality or with homozygous losses of <3 exons; and deletions and insertions >4obp, or in repetitive/high homology sequences.
FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for *in vitro* diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. Foundation Medicine GmbH is accredited by DAkkS according to DIN EN ISO 15189:2014. The accreditation only applies to the scope of accreditation listed in certificate D-ML-21105-01-00.

ϵ

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

MICROSATELLITE STATUS

In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided

by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

TUMOR MUTATIONAL BURDEN

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
ctDNA	Circulating tumor DNA
DCR	Disease control rate
DFS	Disease-free survival
DOR	Duration of response
EFS	Event-free survival
ER	Estrogen receptor
HR +/-	Hormone-receptor positive/negative
ITD	Internal tandem duplication
MR	Molecular response
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
OS	Overall survival
mOS	Median overall survival
PD	Progressive disease
PFS	Progression-free survival
mPFS	Median progression-free survival
PR	Partial response
PSA	Prostate-specific antigen
R/R	Relapsed or refractory
SD	Stable disease
TKI	Tyrosine kinase inhibitor
CRC	Colorectal cancer
HCC	Hepatocellular carcinoma
HNSCC	Head and neck squamous cell carcinoma
NSCLC	Non-small cell lung cancer
RCC	Renal cell carcinoma
SCC	Squamous cell carcinoma

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh₃₇), also known as hg₁₉.

SOFTWARE VERSION INFORMATION

MR Suite Version (RG) 8.6.1 MR Reporting Config Version 70 Analysis Pipeline Version v3.39.0 Computational Biology Suite Version 6.34.0

The median exon coverage for this sample is 2,229x

APPENDIX

References

- Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Overman et al., 2016; ASCO Abstract 3501
- 5. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 6. Ayers et al., 2016; ASCO-SITC Abstract P60
- 7. Bonneville R, et al. JCO Precis Oncol (2017) pmid: 29850653
- 8. Davis JL, et al. Arch. Pathol. Lab. Med. (2014) pmid: 24878023
- 9. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- 10. Schneider-Stock R, et al. Int. J. Oncol. (1999) pmid: 10087320
- 11. Argilés G, et al. Ann Oncol (2020) pmid: 32702383
- 12. Ribic CM, et al. N. Engl. J. Med. (2003) pmid: 12867608
- 13. Sargent DJ, et al. J. Clin. Oncol. (2010) pmid: 20498393
- 14. Sinicrope FA, et al. J Natl Cancer Inst (2011) pmid: 21597022
- 15. Van Cutsem E, et al. Ann Oncol (2014) pmid: 25190710
- 16. Wu et al., 2022;36357827
- McCluggage WG, et al. Histopathology (2022) pmid: 34996131
- 18. Oaknin A, et al. Ann Oncol (2022) pmid: 35690222
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 20. Talhouk A, et al. Br J Cancer (2015) pmid: 26172027
- 21. Concin N, et al. Virchows Arch (2021) pmid: 33604759
- 22. León-Castillo A, et al. J Clin Oncol (2020) pmid:
- 23. Zhu L, et al. Mol Clin Oncol (2015) pmid: 26137290
- 24. Leung SY, et al. Cancer Res. (1999) pmid: 9892201
- 25. dos Santos NR, et al. Gastroenterology (1996) pmid: 8536886 26. Wu MS, et al. Cancer Res. (1998) pmid: 9537253
- 27. Seo JY, et al. World J. Gastroenterol. (2015) pmid: 26078567
- 28. Nature (2014) pmid: 25079317
- 29. Pietrantonio F, et al. J. Clin. Oncol. (2019) pmid: 31513484
- 30. Janjigian YY, et al. Cancer Discov (2018) pmid: 29122777
- 31. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 32. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 33. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:
- 34. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 35. Pawlik TM. et al. Dis. Markers (2004) pmid: 15528785
- 36. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 37. Legrand et al., 2018; ASCO Abstract 12000
- 38. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 40. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 41. Marabelle et al., 2019; ESMO Abstract 11920
- 42. Cristescu R, et al. Science (2018) pmid: 30309915

- 43. Hodi et al., 2019; AACR abstract CT037
- 44. Lee et al., 2019; ASCO Abstract 641
- 45. Rizvi et al., 2017: WCLC Abstract 1106.
- 46. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 47. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid:
- 48. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 49. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 51. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 52. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 53. Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- 54. Cristescu R, et al. J Immunother Cancer (2022) pmid:
- 55. Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- 56. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 57. Schenker at al., 2022; AACR Abstract 7845
- 58. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 59. Steele CD, et al. Cancer Cell (2019) pmid: 30889380
- 60. Casev DL, et al. Clin Cancer Res (2020) pmid: 31699828
- 61. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 62. Hill VK. et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 63. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 64. Rizvi NA, et al. Science (2015) pmid: 25765070
- 65. Johnson BE, et al. Science (2014) pmid: 24336570
- 66. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 67. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 68. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 69. Nature (2012) pmid: 22810696
- 70. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- Agaram NP, et al. Am. J. Surg. Pathol. (2019) pmid: 30720533
- 72. Brunac AC, et al. Pediatr Blood Cancer (2020) pmid: 31965718
- 73. Dashti NK, et al. Histopathology (2018) pmid: 29758589
- 74. Tagami Y, et al. Pathol. Res. Pract. (2019) pmid: 30948206
- 75. Watson S, et al. J. Pathol. (2018) pmid: 29431183
- 76. Grosso F, et al. Lancet Oncol. (2007) pmid: 17586092
- 77. Grosso F, et al. Ann. Oncol. (2009) pmid: 19465423
- 78. Pedrinaci IZ, et al. J Med Case Rep (2012) pmid: 23253485
- 79. Uboldi S, et al. Int. J. Cancer (2012) pmid: 21805478
- 80. Forni C, et al. Mol. Cancer Ther. (2009) pmid: 19190116
- 81. Di Giandomenico S, et al. Oncogene (2014) pmid: 24213580
- 82. Frapolli R, et al. Clin. Cancer Res. (2010) pmid: 20732964
- 83. Künstlinger H, et al. Oncotarget (2015) pmid: 26036639
- 84. Antonescu CR, et al. J Mol Diagn (2000) pmid: 11229517
- 85. Narendra S, et al. Diagn. Mol. Pathol. (2011) pmid: 22089349
- 86. Fletcher CD, et al. Am. J. Pathol. (1996) pmid: 8579124

- 87. Bode-Lesniewska B, et al. Genes Chromosomes Cancer (2007) pmid: 17647282
- 88. Nishio J, et al. Genet Res Int (2011) pmid: 22567356
- 89. Willeke F, et al. Clin. Cancer Res. (1998) pmid: 9676855
- 90. Riggi N, et al. Cancer Res. (2006) pmid: 16849546
- 91. Pérez-Mancera PA, et al. Semin. Cancer Biol. (2005) pmid: 15826835
- 92. Antonescu CR, et al. Clin. Cancer Res. (2001) pmid: 11751490
- 93. Harb et al., 2018; ESMO Abstract 420

TUMOR TYPE

- 94. McDonald et al., 2018; ASH Abstract 4097
- 95. Ribrag et al., 2018: ASH Abstract 4196
- 96. Italiano A, et al. Lancet Oncol. (2018) pmid: 29650362
- 97. Morschhauser F, et al. Lancet Oncol (2020) pmid: 33035457
- 98. Knutson SK, et al. Nat. Chem. Biol. (2012) pmid: 23023262
- 99. McCabe MT, et al. Nature (2012) pmid: 23051747
- 100. Bradley WD, et al. Chem. Biol. (2014) pmid: 25457180
- 101. Tiffen JC, et al. Oncotarget (2015) pmid: 26304929
- 102. Ribrag et al., 2018; ASH Abstracts 4196
- 103. Papadopoulos et al., 2022; ENA Abstract 188
- 104. Yap TA, et al. Clin. Cancer Res. (2019) pmid: 31471312
- 105. Maruyama et al., 2017; ASH Abstract 4070
- 106. Oi W. et al. Nat. Chem. Biol. (2017) pmid: 28135235
- 107. Huang Y, et al. J. Med. Chem. (2017) pmid: 28092155
- 108. He Y, et al. Nat. Chem. Biol. (2017) pmid: 28135237
- 109. Bisserier M, et al. Blood (2018) pmid: 29572378
- 110. Xu F. et al. Expert Rev Hematol (2012) pmid: 22475286
- 111. Chase A, et al. Clin. Cancer Res. (2011) pmid: 21367748
- 112. Nielsen AL, et al. FEBS Lett. (2012) pmid: 22575654
- 113. Gonzalez ME, et al. Cancer Res. (2011) pmid: 21406404
- 114. Nacey BA, et al. Nat Commun (2022) pmid: 35705560 115. Kirmizis A, et al. Genes Dev. (2004) pmid: 15231737
- 116. Kuzmichev A. et al. Mol. Cell (2004) pmid: 15099518
- 117. Pasini D, et al. EMBO J. (2004) pmid: 15385962
- 118. Schlesinger Y, et al. Nat. Genet. (2007) pmid: 17200670
- 119. Duan R, et al. J Hematol Oncol (2020) pmid: 32723346
- 120. Eich ML, et al. Cancer Res (2020) pmid: 32978169
- 121. Liu Y, et al. Cell Death Dis (2021) pmid: 34671029 122. Guan X, et al. Oncogene (2020) pmid: 33009487
- 123. Huang J, et al. Cancer Sci (2021) pmid: 33615636
- 124. Cardoso C, et al. Hum. Mol. Genet. (1998) pmid:
- 125. Ryan RJ, et al. PLoS ONE (2011) pmid: 22194861
- 126. Yap DB, et al. Blood (2011) pmid: 21190999
- 127. Bödör C, et al. Blood (2013) pmid: 24052547 128. Sneeringer CJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2010)
- pmid: 21078963
- 129. Germano G, et al. Cancer Res. (2010) pmid: 20215499 130. Demetri GD, et al. J. Clin. Oncol. (2016) pmid: 26371143
- 131. Takahashi M, et al. Oncologist (2017) pmid: 28526720 132. Gronchi A, et al. EClinicalMedicine (2019) pmid:
- 31143880 133. Martin-Broto J, et al. JAMA Oncol (2020) pmid:

32077895