

ЛАБОРАТОРИЯ МОЛЕКУЛЯРНОЙ ПАТОЛОГИИ

Юр.адрес: 105005, Россия, г. Москва, ул. Бауманская, д. 50\12, стр. 1

★ +7 (495) 660-83-77
★ +7 800-333-45-38
★ callcenter@genomed.ru
★ www.genomed.ru

ЗАКЛЮЧЕНИЕ

по результатам исследования ДНК методом клинического секвенирования

Номер договора: Дата забора материала:

Пациент: Дата поступления материала в лабораторию:

Дата рождения: Пол:

Вид биоматериала: Дата готовности исследования:

Вид исследования: 856 Полное секвенирование генома GenomeUNI

Направительный диагноз:

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Варианты, которые могут быть вероятной причиной заболевания приоритизированы по проприетарному алгоритму с учетом рекомендаций ACMG, наличию в базах данных, популяционных частот и других критериев.

На основании проведенной приоритизации и фенотипа пациента, описанного в представленных документах варианты сгруппированы по степени вероятности их патогенности для пациента. В группах варианты расположены в порядке снижения приоритетности.

Варианты, не имеющие признаков патогенности, либо имеющие некоторые признаки патогенности, но, несоответствующие фенотипу, описанному в сопроводительных документах, могут быть не включены в заключение.

Подробно с описанием исследования можно ознакомиться в приложении к заключению.

ВНИМАНИЕ! Варианты, обнаруженные в результате исследования, не являются установленным диагнозом, а могут быть использованы в совокупности с данными других лабораторных и инструментальных методов только врачом генетиком.

Для уточнения значимости обнаруженных вариантов, в том числе с учетом клинической картины пациента необходима консультация врача-генетика.

Врач-генетик

Вариант (hg38)	Зиготно сть	Ген	Транскрипт	кДНК	АК замена	Глу бин а про чте ния		
Признаки патогенности и комментарии								
Синдром								

1. Варианты, являющиеся наиболее вероятной причиной заболевания

Релевантных вариантов не обнаружено

2. Варианты, имеющие один или несколько значимых признаков патогенности

chr9:134691025TAC>T	Гетероз иготный	COL5A1	ENST000003 71817	c.225_226delCA	p.Tyr75fs	48
---------------------	--------------------	--------	---------------------	----------------	-----------	----

Признаки патогенности варианта:

Приводит к сдвигу рамки считывания

Отсутствует в популяционных БД (GNOMAD, GENOMED)

Влияния варианта на функцию гена

Другая информация:

Несколько компьютерных алгоритмов предсказывают непатогенность.

Классификация CLINVAR: Pathogenic (Pathogenic - 1).

Заболевания, ассоциированные с геном:

Ehlers-Danlos syndrome, classic type, 1 (130000), AD

Fibromuscular dysplasia, multifocal (619329), AD

Рекомендуется сопоставление фенотипа пациента с фенотипом заболеваний ассоциированных с геном и обследование родителей для установления происхождения варианта (de novo/наследуемый).

3. Варианты с неизвестным клиническим значением

Релевантных вариантов не обнаружено

4. Носительство вариантов в генах рецессивных заболеваний

<u>chr1:94043413G>A</u> Гетероз иготный	ABCA4	ENST000003 70225	c.3113C>T	p.Ala1038Val	65	
--	-------	---------------------	-----------	--------------	----	--

Признаки патогенности варианта:

Влияния варианта на функцию гена

Присутствует в популяционных базах данных, но с частотой ниже, чем частота других патогенных вариантов в этом гене.

Другая информация:

Присутствует в популяционных БД в гетерозиготном состоянии (GNOMAD V2:0.001679210; GNOMAD V3:0.001636670)

Несколько компьютерных алгоритмов предсказывают непатогенность.

Классификация ACMG: Likely Pathogenic.

Классификация CLINVAR: Pathogenic/Likely pathogenic (Likely pathogenic - 10, not provided - 1, Pathogenic - 29).

Заболевания, ассоциированные с геном:

|--|

Признаки патогенности и комментарии

Синдром

Cone-rod dystrophy 3 (604116), AR Fundus flavimaculatus (248200), AR Retinal dystrophy, early-onset severe (248200), AR Retinitis pigmentosa 19 (601718), AR Stargardt disease 1 (248200), AR {Macular degeneration, age-related, 2} (153800), AD

Для рецессивного заболевания, обнаруженный вариант не может рассматриваться в качестве причины заболевания без наличия патогенного структурного варианта в другом аллеле. В некоторых случаях носительство вариантов рецессивных заболеваний может иметь значение для родственников пациента.

chr2:151501423G>A	Гетероз иготный	NEB	ENST000003 97345	c.23989C>T	p.Arg7997*	50
-------------------	--------------------	-----	---------------------	------------	------------	----

Признаки патогенности варианта:

Приводит к терминации синтеза белка

Влияния варианта на функцию гена

Другая информация:

Присутствует в популяционных БД в гетерозиготном состоянии (GNOMAD V2:0.000272369; GNOMAD V3:0.000302536)

Приводит к аминокислотной замене где обнаружены другие непатогенные аминокислотные замены Классификация ACMG: Pathogenic.

Классификация CLINVAR: Pathogenic/Likely pathogenic (Likely pathogenic - 10, Pathogenic - 7, Uncertain significance - 1).

Заболевания, ассоциированные с геном:

Arthrogryposis multiplex congenita 6 (619334), AR Nemaline myopathy 2, autosomal recessive (256030), AR

Для рецессивного заболевания, обнаруженный вариант не может рассматриваться в качестве причины заболевания без наличия патогенного структурного варианта в другом аллеле. В некоторых случаях носительство вариантов рецессивных заболеваний может иметь значение для родственников пациента.

chr7:56015124C>A	Гетероз иготный	PSPH	ENST000002 75605	c.469G>T	p.Gly157*	34
------------------	--------------------	------	---------------------	----------	-----------	----

Признаки патогенности варианта:

Приводит к терминации синтеза белка

Влияния варианта на функцию гена

Другая информация:

Присутствует в популяционных БД в гетерозиготном состоянии (GNOMAD V3:0.000019737)

Классификация ACMG: Pathogenic.

Классификация CLINVAR: Uncertain significance (Uncertain significance - 1).

Заболевания, ассоциированные с геном:

Phosphoserine phosphatase deficiency (614023), AR

Вариант (hg38)	Зиготно сть	Ген	Транскрипт	кДНК	АК замена	Глу бин а про чте ния
----------------	----------------	-----	------------	------	-----------	--------------------------------------

Признаки патогенности и комментарии

Синдром

Для рецессивного заболевания, обнаруженный вариант не может рассматриваться в качестве причины заболевания без наличия патогенного структурного варианта в другом аллеле. В некоторых случаях носительство вариантов рецессивных заболеваний может иметь значение для родственников пациента.

chr10:49516651A>AC	Гетероз иготный	ERCC6	ENST000004 47839	c.1867_1868insG	p.Ile623fs	36
--------------------	--------------------	-------	---------------------	-----------------	------------	----

Признаки патогенности варианта:

Приводит к сдвигу рамки считывания

Влияния варианта на функцию гена

Присутствует в популяционных базах данных, но с частотой ниже, чем частота других патогенных вариантов в этом гене.

Другая информация:

Присутствует в популяционных БД в гетерозиготном состоянии (GNOMAD V2:0.00007958)

Несколько компьютерных алгоритмов предсказывают непатогенность.

Заболевания, ассоциированные с геном:

?De Sanctis-Cacchione syndrome (278800), AR

Cerebrooculofacioskeletal syndrome 1 (214150), AR

Cockayne syndrome, type B (133540), AR

Premature ovarian failure 11 (616946), AD

UV-sensitive syndrome 1 (600630), AR

{Lung cancer, susceptibility to} (211980), AD, SM

{Macular degeneration, age-related, susceptibility to, 5} (613761)

Для рецессивного заболевания, обнаруженный вариант не может рассматриваться в качестве причины заболевания без наличия патогенного структурного варианта в другом аллеле. В некоторых случаях носительство вариантов рецессивных заболеваний может иметь значение для родственников пациента.

chr11:72301838C>CT	Гетероз иготный	CLPB	ENST000005 38039	c.1293dupA	p.Asp432fs	52	
--------------------	--------------------	------	---------------------	------------	------------	----	--

Признаки патогенности варианта:

Приводит к сдвигу рамки считывания

Влияния варианта на функцию гена

Другая информация:

Присутствует в популяционных БД в гетерозиготном состоянии (GNOMAD V2:0.000027847; GNOMAD V3:0.000039418)

Классификация ACMG: Pathogenic.

Классификация CLINVAR: Pathogenic (Pathogenic - 1).

Заболевания, ассоциированные с геном:

3-methylglutaconic aciduria, type VIIA, autosomal dominant (619835), AD

3-methylglutaconic aciduria, type VIIB, autosomal recessive (616271), AR

Neutropenia, severe congenital, 9, autosomal dominant (619813), AD

Вариант (hg38)	Зиготно сть	Ген	Транскрипт	кДНК	АК замена	Глу бин а про чте ния		
	Приз	наки патогенн	юсти и коммен	нтарии				
Синдром								
Для рецессивного заболевания, обнаруженный вариант не может рассматриваться в качестве причины заболевания								
	генного	структурн		ианта в	1 2	ллеле.		
В некоторых случаях носительство вариантов рецессивных заболеваний может иметь значение для родственников								

5. Вариации числа копий генов

пациента.

Патогенных структурных вариантов не обнаружено.

6. Митохондриальные варианты

Патогенных вариантов в митохондриальном геноме не обнаружено.

7. Изменения, связанные с экспансией TNR

Изменений, связанных с экспансией STR не обнаружено.

ИНФОРМАЦИЯ ОБ ИССЛЕДОВАНИИ

Анализ ДНК проводится по технологии секвенирования нового поколения методом парно-концевого чтения. Для пробоподготовки используется методика фрагментации ДНК PCR free технологии пробоподготовки для анализа.

Анализ покрывает 98,5% всего генома.

Среднее покрытие составляет не менее 30х. Это означает, что каждый исследуемый участок генома в среднем анализируется не менее 30 раз для избежания влияния технических ошибок чтения на результаты исследования. Такое покрытие позволяет осуществлять детекцию вариантов, в среднем, не менее чем 98%. Для сложных участков генома (например, GC-богатых участков) среднее покрытие может быть ниже. Участки генома с покрытием, не соответствующим критериям достоверности вследствие технических ограничений сиквенса, в дальнейший анализ не включаются.

Метод позволяет выявить наследуемые или вновь возникшие (de novo) изменения структуры ДНК которые могут являться причиной генетического заболевания:

- -Однонуклеотидные замены в том числе в интронных и межгенных участках.
- Небольшие инсерции и делеции от 1 нуклеотида
- Делеции и дупликации (CNV) любого размера
- Варианты в митохондриальной ДНК
- Тринуклеотидные повторы (болезни экспансии)
- Сбалансированные транслокации с точным определением координат разрыва.

Обработка данных секвенирования проводится с использованием автоматизированного алгоритма, включающего выравнивание прочтений на референсную последовательность генома человека (hg38), постпроцессинг выравнивания, выявление вариантов и фильтрацию вариантов по качеству, а также аннотацию выявленных вариантов по каноническому транскрипту каждого гена и их приоритезацию с учетом рекомендаций ACMG. Варианты, не соответствующие критериям качества из дальнейшего анализа исключаются.

Автоматизированный алгоритм приоритезирует варианты по вероятности их клинического значения для данного пациента. Однако, это не означает, что какой-либо из обнаруженных вариантов является причиной заболевания у пациента.

Для оценки значимости варианта необходимо сопоставление найденных вариантов с клинической картиной пациента, а в некоторых случаях дополнительный биоинформатический анализ.

Если обнаруженный вариант ранее классифицирован как патогенный это не означает, что он может быть патогенным и у другого пациента.

Для оценки клинической релевантности выявленных вариантов при дальнейшем анализе необходимо использовать базу данных OMIM, специализированные базы данных по отдельным заболеваниям (при наличии) и литературные данные

В приоритезированный список включены обнаруженные варианты в кодирующих областях генов, обладающие средним и высоким влиянием на синтез белка (миссенс, нонсенс, сдвиг рамки считывания), а также варианты в сплайсинговых участках генов. Синонимичные варианты (не приводящие к замене аминокислот) и варианты в интронных областях генов, а также варианты с высокой частотой и не описанные ранее как патогенные, не включены в приоритезированный список.

Обследование родителей пробанда или других родственников может потребоваться для установления происхождения (наследуемый/de novo) обнаруженного варианта и уточнения его патогенности.

В связи с быстрым обновлением информации о патогенности вариантов и появлением новых данных, в некоторых случаях может быть рекомендован повторный анализ данных секвенирования. Повторный анализ данных секвенирования может быть рекомендован при изменении фенотипа пациента, появлении новых симптомов, связанных с прогрессированием заболевания, либо при появлении новых данных лабораторного и инструментального обследования, изменяющих направления дифференциальной диагностики.

По запросу пациента или лечащего врача могут быть представлены первичные данные секвенирования в формате FASTQ. Однако, анализ таких данных требует дополнительной их обработки, которая выполняется только подготовленным специалистом.

Данные секвенирования и обнаруженные варианты не являются окончательным диагнозом и должны использоваться совместно с другими лабораторными и клиническими данными. Корректная интерпретация результатов геномного анализа может быть выполнена только врачом-генетиком.

Исследование выполняется на высокопроизводительной системе для секвенирования нуклеиновых кислот Геноскан 4000.

Регистрационный номер федеральной службы по надзору в сфере здравоохранения: РЗН 2025/24616.

ГРУППИРОВКА ВАРИАНТОВ ПО ВЕРОЯТНОСТИ ИХ ПАТОГЕННОСТИ ДЛЯ ПАЦИЕНТА

1. Варианты, являющиеся наиболее вероятной причиной заболевания.

В данную группу включаются следующие варианты:

- а. Обозначенные как патогенные в реферируемых базах вариантов, таких как Clinvar или в специализированных базах вариантов и описание фенотипа пациента имеет признаки соответствующие описанным при данном заболевании.
- б. Не обозначенные как патогенные в реферируемых базах вариантов, таких как Clinvar или в специализированных базах геномных вариантов, но имеющие высокую вероятность патогенности, основанную на нескольких значимых критериях патогенности (высокий скор патогенности) и описание фенотипа пациента имеет признаки соответствующие описанные при данном заболевании.

Такие варианты следует рассматривать как вероятную причину заболевания в первую очередь. Для некоторых вариантов, включенных в эту группу (известные патогенные варианты с полным соответствием фенотипа) установления происхождения варианта остается на усмотрение врача. Для вариантов, ранее не обозначенных как патогенные установление происхождения варианта должно быть рекомендовано пациенту.

2. Варианты, имеющие значимые признаки патогенности

В данную группу включаются следующие варианты:

Имеющие один или несколько значимых признаков патогенности. В эту группу включаются включены варианты, которые имеют признаки как патогенности, так и непатогенности, но с преобладанием признаков патогенности. Также могут быть различные вариации совпадения фенотипа пациента с признаками, описанными при данном заболевании.

Для таких вариантов требуется сопоставление клинических и лабораторных данных пациента с описанными при заболевании. Установление происхождения таких вариантов является важным для оценки их патогенности.

Для исключения/подтверждения патогенности таких вариантов может быть рекомендована консультация врача-генетика, специализирующегося на анализе данных секвенирования.

3. Варианты, имеющие как признаки патогенности, так и непатогенности. Может быть различная степень совпадения фенотипа пациента с признаками, описанными при данном заболевании.

Маловероятно, что такие варианты являются причиной заболевания. Однако в некоторых случаях информация о таких вариантах может быть полезна врачу для сопоставления фенотипа пациента с фенотипом, описанным для заболевания.

В случае достаточного сходства может быть рекомендован поиск мутаций, не выявляемых методом NGS (напр. вариаций числа копий) на втором аллеле, подтверждение происхождения варианта и дополнительный анализ данных и консультация врача генетика специализирующегося на анализе данных секвенирования.

4. Носительство вариантов, связанных с наследственными заболеваниями.

В эту группу включены гетерозиготные варианты в генах аутосомно-рецессивных заболеваний, ранее описанные как патогенные или обладающие значимы признаками патогенности. Такие варианты не являются патогенными сами по себе, но могут иметь значение при наличии не определенного варианта в другом аллеле. В некоторых случаях эта информация может иметь значение для родственников пациента.

^{*} Значимые варианты определены в контексте рекомендаций ACMG (Very strong/Strong/Moderate).